Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Nockemann* and Gerd Meyer

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.019 \AA$
R factor $=0.023$
$w R$ factor $=0.058$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Trimethylphenylammonium trichloromercurate(II), $\left(\mathrm{Me}_{3} \mathrm{PhN}\right)\left[\mathrm{HgCl}_{3}\right]$

The crystal structure of $\left(\mathrm{Me}_{3} \mathrm{PhN}\right)\left[\mathrm{HgCl}_{3}\right]$ contains $\left[\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}\right]^{+}$cations and chains of distorted vertexsharing $\left[\mathrm{HgCl}_{4}\right]^{2-}$ tetrahedra running parallel to [100]. The tetrahedra around mercury(II) are distorted, exhibiting a $[2+2]$ coordination. Apart from one of the Cl atoms, which is located on a twofold rotation axis, and a pair of symmetryrelated methyl C atoms, which are located in general positions, all non H -atoms lie on mirror planes.

Comment

Coordination polyhedra of chloromercurate(II) anions exhibit a surprisingly wide variety. No less than 252 crystallographically distinct $\mathrm{Hg}^{\text {II }}$ species were listed in a recent overview (Serezhkin et al., 2001). The trichloromercurate(II) anion, $\left[\mathrm{HgCl}_{3}\right]^{-}$, is only rarely found as an isolated anion. The same is true for the dimeric unit, $\left[\mathrm{Hg}_{2} \mathrm{Cl}_{6}\right]^{2-}$, which occurs as two tetrahedra sharing one common edge. In most cases, however, $[3+2]_{n}$ and $[2+4]_{n}$ chains are observed, depending upon size and charge of the counter-cation(s) (House et al., 1994).

(I)

The structure of $\left(\mathrm{Me}_{3} \mathrm{PhN}\right)\left[\mathrm{HgCl}_{3}\right]$, (I), consists essentially of $\left[\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}\right]^{+}$cations and chains of distorted vertexsharing $\left[\mathrm{HgCl}_{4}\right]^{2-}$ tetrahedra. The $\mathrm{Hg}^{\text {II }}$ ion has a distorted tetrahedral coordination, with two chloride ligands with short $\mathrm{Hg}^{2+} \ldots \mathrm{Cl}^{-}$bond lengths of 2.385 (2) and 2.393 (2) \AA, and two bridging chloride ligands with considerably longer $\mathrm{Hg}^{2+} \ldots \mathrm{Cl}^{-}$ distances of 2.602 (1) \AA. These tetrahedra build vertex-sharing chains parallel to [100]. The angle involving the bridging chloride ligands, $\mathrm{Cl} 3-\mathrm{Hg}-\mathrm{Cl} 3{ }^{\mathrm{i}}$ (symmetry code as in Table 1), and the angle involving the two other Cl ligands, $\mathrm{Cl} 1-\mathrm{Hg}-$ Cl 2 , show distinct deviations from the ideal tetrahedral geometry, with values of 91.72 (6) and $134.9(2)^{\circ}$, respectively. The Hg atoms, the Cl 1 and Cl 2 ligands, and the plane of the phenyl ring lie on a mirror plane perpendicular to the a axis.

Experimental

A solution of $1 \mathrm{mmol}(0.1717 \mathrm{~g})$ trimethylphenylammonium chloride, $\left[\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}\right] \mathrm{Cl}$, and $1 \mathrm{mmol}(0.2715 \mathrm{~g}) \mathrm{HgCl}_{2}$ in a mixture of 20 ml water and 30 ml methanol was stirred at 333 K for 3 h . Colourless single crystals were obtained when the solution was allowed to stand at room temperature for 2 d .

Figure 1
Packing diagram viewed down the a axis.

Figure 2
Part of the vertex-sharing chain of $\left[\mathrm{HgCl}_{4}\right]^{2-}$ tetrahedra. Displacement ellipsoids are at the 50% probability level.

Crystal data

$\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}\right)\left[\mathrm{HgCl}_{3}\right]$
$M_{r}=443.15$
Orthorhombic, Ama2
$a=7.4699$ (19) \AA
$b=14.379$ (2) \AA
$c=12.5687(10) \AA$
$V=1350.0(4) \AA^{3}$
$Z=4$
$D_{x}=2.180 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Stoe Imaging Plate Diffraction System (IPDS-I)

φ scans

Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.034, T_{\text {max }}=0.585$
7398 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 7398 reflections
$\theta=2.2-32.3^{\circ}$
$\mu=11.96 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

> 1426 independent reflections 1249 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.086$
> $\theta_{\max }=26.0^{\circ}$
> $h=-9 \rightarrow 7$
> $k=-17 \rightarrow 17$
> $l=-15 \rightarrow 15$

Figure 3
The $\left[\mathrm{Me}_{3} \mathrm{PhN}\right]^{+}$cation. Displacement ellipsoids are at the 50% probability level.

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.003$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.058$
$S=1.00$
1426 reflections
82 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0241 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$\Delta \rho_{\max }=0.98 \mathrm{e}^{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.08$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.00312 (19)
Absolute structure: Flack (1983),
0000 Friedel pairs
Flack parameter $=-0.015(12)$

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

$\mathrm{Hg} 1-\mathrm{Cl} 1$	$2.385(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.379(13)$
$\mathrm{Hg} 1-\mathrm{Cl} 2$	$2.393(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.385(14)$
$\mathrm{Hg} 1-\mathrm{Cl} 3$	$2.6022(14)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.41(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.466(14)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.34(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.510(13)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.33(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.508(9)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.37(2)$
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl} 2$	$134.88(18)$	$\mathrm{C} 8^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 8$	$107.8(7)$
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$106.36(11)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.1(11)$
$\mathrm{Cl} 2-\mathrm{Hg} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$104.64(5)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$121.7(9)$
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl} 3$	$106.36(11)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$119.2(10)$
$\mathrm{Cl} 2-\mathrm{Hg} 1-\mathrm{Cl} 3$	$104.64(5)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.6(14)$
$\mathrm{Cl} 3-\mathrm{Hg} 1-\mathrm{Cl} 3^{\mathrm{i}}$	$91.72(6)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.9(13)$
$\mathrm{Hg} 1^{\mathrm{ii}}-\mathrm{Cl} 3-\mathrm{Hg} 1$	$101.40(7)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.7(14)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$112.8(9)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.3(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$110.2(5)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.4(12)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$107.9(6)$		

Symmetry codes: (i) $\frac{3}{2}-x, y, z$; (ii) $1-x,-y, z$.
Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-STEP32 (Stoe \& Cie, 2000); data reduction: X-RED (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999).

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
House, D. A., Robinson, W. T. \& McKee, V. (1994). Coord. Chem. Rev. 135136, 533-586.
Serezhkin, V. N. \& Serezhkina, L. B. \& Ulanov, A. S. \& D'yachenko, O. A. (2001). Crystallogr. Rep. 46, 475-484.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2000). X-STEP32. Version 1.06f. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe \& Cie, Darmstadt, Germany.

