Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter Nockemann* and Gerd Meyer

Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.019 Å R factor = 0.023 wR factor = 0.058 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The crystal structure of $(Me_3PhN)[HgCl_3]$ contains $[(CH_3)_3(C_6H_5)N]^+$ cations and chains of distorted vertexsharing $[HgCl_4]^{2-}$ tetrahedra running parallel to [100]. The tetrahedra around mercury(II) are distorted, exhibiting a [2+2] coordination. Apart from one of the Cl atoms, which is located on a twofold rotation axis, and a pair of symmetryrelated methyl C atoms, which are located in general positions, all non H-atoms lie on mirror planes.

Trimethylphenylammonium trichloromercurate(II),

Received 9 August 2002 Accepted 27 August 2002 Online 13 September 2002

Comment

(Me₃PhN)[HgCl₃]

Coordination polyhedra of chloromercurate(II) anions exhibit a surprisingly wide variety. No less than 252 crystallographically distinct Hg^{II} species were listed in a recent overview (Serezhkin *et al.*, 2001). The trichloromercurate(II) anion, [HgCl₃]⁻, is only rarely found as an isolated anion. The same is true for the dimeric unit, $[Hg_2Cl_6]^{2-}$, which occurs as two tetrahedra sharing one common edge. In most cases, however, $[3+2]_n$ and $[2+4]_n$ chains are observed, depending upon size and charge of the counter-cation(s) (House *et al.*, 1994).

The structure of $(Me_3PhN)[HgCl_3]$, (I), consists essentially of $[(CH_3)_3(C_6H_5)N]^+$ cations and chains of distorted vertexsharing $[HgCl_4]^{2-}$ tetrahedra. The Hg^{II} ion has a distorted tetrahedral coordination, with two chloride ligands with short $Hg^{2+}\cdots Cl^-$ bond lengths of 2.385 (2) and 2.393 (2) Å, and two bridging chloride ligands with considerably longer $Hg^{2+}\cdots Cl^$ distances of 2.602 (1) Å. These tetrahedra build vertex-sharing chains parallel to [100]. The angle involving the bridging chloride ligands, $Cl3-Hg-Cl3^i$ (symmetry code as in Table 1), and the angle involving the two other Cl ligands, Cl1-Hg-Cl2, show distinct deviations from the ideal tetrahedral geometry, with values of 91.72 (6) and 134.9 (2)°, respectively. The Hg atoms, the Cl1 and Cl2 ligands, and the plane of the phenyl ring lie on a mirror plane perpendicular to the *a* axis.

Experimental

A solution of 1 mmol (0.1717 g) trimethylphenylammonium chloride, $[(CH_3)_3(C_6H_5)N]Cl$, and 1 mmol (0.2715 g) HgCl₂ in a mixture of 20 ml water and 30 ml methanol was stirred at 333 K for 3 h. Colourless single crystals were obtained when the solution was allowed to stand at room temperature for 2 d.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1 Packing diagram viewed down the *a* axis.

Figure 2

Part of the vertex-sharing chain of $[HgCl_4]^{2-}$ tetrahedra. Displacement ellipsoids are at the 50% probability level.

Crystal data

$(C_9H_{14}N)[HgCl_3]$
$M_r = 443.15$
Orthorhombic, Ama2
$a = 7.4699 (19) \text{\AA}$
b = 14.379(2) Å
c = 12.5687 (10) Å
$V = 1350.0 (4) \text{ Å}^3$
Z = 4
$D_x = 2.180 \text{ Mg m}^{-3}$

Data collection

Stoe Imaging Plate Diffraction System (IPDS-I) φ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) $T_{\min} = 0.034, T_{\max} = 0.585$ 7398 measured reflections Mo $K\alpha$ radiation Cell parameters from 7398 reflections $\theta = 2.2-32.3^{\circ}$ $\mu = 11.96 \text{ mm}^{-1}$ T = 293 (2) KPrism, colourless $0.4 \times 0.3 \times 0.2 \text{ mm}$

1426 independent reflections 1249 reflections with $I > 2\sigma(I)$ $R_{int} = 0.086$ $\theta_{max} = 26.0^{\circ}$ $h = -9 \rightarrow 7$ $k = -17 \rightarrow 17$ $l = -15 \rightarrow 15$

Figure 3

The $[Me_3PhN]^+$ cation. Displacement ellipsoids are at the 50% probability level.

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.003$
$R[F^2 > 2\sigma(F^2)] = 0.023$	$\Delta \rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.058$	$\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$
S = 1.00	Extinction correction: SHELXL97
1426 reflections	Extinction coefficient: 0.00312 (19)
82 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	0000 Friedel pairs
$w = 1/[\sigma^2(F_o^2) + (0.0241P)^2]$	Flack parameter = -0.015 (12)
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1

Selected geometric parameters (Å, °).

2.385 (2)	C1-C2	1.379 (13)
2.393 (2)	C1-C6	1.385 (14)
2.6022 (14)	C2-C3	1.41 (2)
1.466 (14)	C3-C4	1.34 (2)
1.510 (13)	C4-C5	1.33 (2)
1.508 (9)	C5-C6	1.37 (2)
134.88 (18)	$C8^{i} - N1 - C8$	107.8 (7)
106.36 (11)	C2-C1-C6	119.1 (11)
104.64 (5)	C2-C1-N1	121.7 (9)
106.36 (11)	C6-C1-N1	119.2 (10)
104.64 (5)	C1-C2-C3	118.6 (14)
91.72 (6)	C4-C3-C2	120.9 (13)
101.40 (7)	C3-C4-C5	119.7 (14)
112.8 (9)	C4-C5-C6	122.3 (15)
110.2 (5)	C5-C6-C1	119.4 (12)
107.9 (6)		
	$\begin{array}{c} 2.385\ (2)\\ 2.393\ (2)\\ 2.6022\ (14)\\ 1.466\ (14)\\ 1.510\ (13)\\ 1.508\ (9)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $\frac{3}{2} - x$, y, z; (ii) 1 - x, -y, z.

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-STEP32* (Stoe & Cie, 2000); data reduction: *X-RED* (Stoe & Cie, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1999).

References

- Brandenburg, K. (1999). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- House, D. A., Robinson, W. T. & McKee, V. (1994). Coord. Chem. Rev. 135-136, 533-586.
- Serezhkin, V. N. & Serezhkina, L. B. & Ulanov, A. S. & D'yachenko, O. A. (2001). Crystallogr. Rep. 46, 475–484.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2000). X-STEP32. Version 1.06f. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2001). X-AREA (Version 1.15) and X-RED (Version 1.22). Stoe & Cie, Darmstadt, Germany.